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Abstract—According to US Department of Energy, extreme 
weather is the leading cause of power outages in the United 
States. Although all the system operators have access to weather 
forecast data, no existing automated tool can take advantage of 
this data to guide preventive operation. This paper presents a 
framework to close this gap. The framework first forecasts 
weather with accuracy and resolution required for grid 
operation. The weather forecast data is, then, passed to a 
structural analysis module, where the failure likelihood of 
power system elements is estimated. Finally, the failure 
probabilities are integrated within a day-ahead stochastic unit 
commitment model to guide preventive operation. A scenario 
reduction technique is developed and employed alongside an 
enhanced formulation to achieve computational tractability. 
The simulation results on a 2000-bus Texas system suggest that 
the developed model is effective in reducing power outages, with 
minor additional dispatch cost. The results also suggest that the 
developed framework is tractable for large-scale systems.

Keywords—Extreme weather, power system reliability, power 
system resilience, stochastic unit commitment, structural stability, 
weather forecast.

I. INTRODUCTION
The future electric power system is expected to operate 

autonomously and proactively under extreme conditions [1–
4]. Hurricanes and tropical storms are one category of extreme 
weather events that lead to large blackouts, both in terms of 
lost electric load and number of affected customers [5, 6]. The 
2017 hurricane season clearly revealed the vulnerability of the 
U.S. electric power system to hurricanes. In August 2017, 
hurricane Harvey caused about 300,000 customer outages in 
Texas [7]. About two weeks later, in September, hurricane 
Irma lead to outage of more than 6 million customers in 
Florida (59% of total FL customers) [8], and just below a 
million customers in Georgia (22% of total GA customers) 
[9]. Later in September, hurricane Maria made a devastating 
landfall in Puerto Rico, which left the entire island in complete 
darkness [10]. Even a month after the hurricane’s landfall, still 
73.8% of the customers in Puerto Rico were without power 
[11]. The question this paper aims to answer is whether or not 

better software tools can alleviate the impacts of such events 
on the grid.

Power system reliability is often achieved through 
implementation of various redundancies, so that the system 
withstands likely disturbances [12–14]. Reliability standards 
set by North American Electric Reliability Corporation 
(NERC) require the operators to prevent blackouts under the 
random outage of one (N-1) or two (N-1-1) bulk power 
elements [15,16]. Hurricanes, however, usually lead to outage 
of multiple elements, well beyond the conditions of NERC 
standards. For example, Electric Reliability Council of Texas 
(ERCOT) experienced 97 transmission line outages (139 kV 
and above) after hurricane Harvey made landfall [17]; 
similarly, hurricane Sandy caused the outage of over 218 high-
voltage (115 kV and above) transmission lines [18]. Thus, it 
is apparent that the conventional reliability tools, which the 
industry makes use of, are neither designed for, nor applicable 
to such extreme conditions. 

During extreme weather events, rich meteorological 
information, such as wind direction and speed, is collected and 
available to power system operators [18, 19]. Since the 
reliable delivery of power under such extreme events is not 
guaranteed, employment of meteorological data by the 
utilities in order to prevent catastrophic outages is a favorable 
option [20, 21]. There is a vast body of literature, which aims 
to estimate the power outage statistics (e.g., number of 
customers without power, etc.) with the weather forecast data 
before the hurricane [22–32]. Such statistical models, though 
may produce high-quality results, are only able to provide 
macro-scale statistics about the outage, without any details on 
the element-level failures. There also exists a number of 
studies on optimizing the repair and restoration plan after the 
event [33–39]. However, the literature on preventive 
operation during the hurricane, using hurricane forecast 
information is almost nonexistent. This is due to a 
fundamental knowledge gap that limits our ability of 
incorporating weather forecast data into effective preventive 
actions [40-43]. 

To fill the aforementioned knowledge gap, this paper
takes a holistic approach by using the weather data to 
estimate power system element failure likelihoods. The failure 
probabilities are, then, integrated within a power system 
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operation model to guide preventive operation. This paper
develops an integrated framework to enable preventive 
operation during hurricanes: first, the wind field (speed and 
direction) in the hurricane region will be constructed with 
high-resolution hurricane forecasting models; the failure 
probability of transmission-level elements will be estimated 
through dynamic structural analysis, based on the wind field 
information; then, using a stochastic optimization framework, 
the failure probabilities will be explicitly modeled within a 
power system operation problem to discover preventive 
actions. Fig. 1 provides a schematic overview of the developed 
platform. This integrated platform will estimate expected 
energy not served (EENS) due to the hurricane as well as the 
cost of operation. 

Fig. 1. The architecture of the developed framework.

The remainder of this paper is organized as follows. 
Section II briefly presents the weather forecast module, while 
the transmission failure estimation procedure is explained in 
Section III. Section IV is dedicated to the preventive power 
system operation model. Section V presents the simulation 
results. Finally, Section VI concludes this paper. As an 
example of extreme weather, this paper focuses on the case of 
hurricanes.

II. WEATHER FORECAST MODULE
Commercially available weather forecast usually does not 

meet the quality levels required for power system operation. 
The quality requirements include accuracy, uncertainty 
bounds, and resolution. Thus, the first module of the platform 
performs high resolution and high accuracy weather forecast, 
customized for preventive power system operation.

Fig. 2. Hurricane Harvey forecast probability maps at wind speed of 34kt. 
The figure show 120-h forecast from 00 UTC 8 Sep 2017. The white 
line shows the forecast and black line denotes the best track (e.g., 
“observations”) as a reference.  

For hurricane forecast, in additional to high-resolution 
numerical forecast field at 2-km horizontal grids, a Monte 
Carlo Probability [44] has been implemented and further 
modified by combining it with ensemble forecasts from 
operational centers [45].   Fig. 2 shows sample probability 

result. Hurricane Harvey forecasts data, both from high-
resolution simulations and probability model are used to 
conduct the study.

III. TRANSMISSION FAILURE ESTIMATION
Transmission failures in this work are identified based on 

the response of the towers to the wind load. To estimate the 
tower’s response, a finite element model of transmission 
towers is developed using ANSYS. The model is further 
reduced to a 13-degree of freedom lumped mass model to 
facilitate fast computation. The model is shown in Fig. 3. 

Using the developed model, the response of the tower to 
the wind load can be estimated. The factors that play a role in 
the response include air density, wind direction, wind speed, 
steady wind profiles, turbulent wind frequency (spectrum) and 
the shapes and sizes of the tower members. Our validations 
show that the lumped mass model accurately predicts the 
response of the finite element model. The important factor in 
the response that would determine the failure of the tower is 
the top drift as shown in Fig 3.

Fig. 3. 13-degree of freedom lumped mass model of transmission towers
and the top drift due to wind loading.

To further facilitate computation, we develop the fragility 
curves for transmission towers based on the lumped mass 
model. The particular fragility curve identifies the failure
probability of a transmission tower at a given wind speed. A 
probability of failure P at a certain wind speed indicates the 
top displacement of transmission tower exceeds its 
failure/collapse threshold P*N times in running N simulation 
at the specific wind speed. Fig. 4 demonstrates different 
fragility curves of a prototype transmission tower under 
different wind profiles.

Fig. 4. Fragility curve for transmission towers based on wind loading.

The reliability of the transmission line is equivalent to the 
reliability of a series system considering the individual 
transmission towers as components. Therefore, eventually, the 

Top drift
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failure probably of the transmission line in an extreme wind 
event can be calculated with the fragility curve of the tower 
and the known wind field.

IV. PREVENTIVE DAY-AHEAD SCHEDULING
Given the hurricane forecast, the transmission failure 

estimation module will calculate the probability of line 
failures at each hour of the day. Such probabilities can be 
integrated in a day-ahead security constrained unit 
commitment (SCUC) model, to enable preventive operation. 
The solution to the preventive SCUC will reflect the 
possibility of line failures in a way that the dispatch will rely 
less on the lines that are prone to failure. However, due to 
stochastic nature of the failures, the model will be a stochastic 
SCUC as shown in (1)-(3):minimize (Pr( ) ( , ), ( , ), ( , )     (1)s. t.        ( , ), ( , ), ( , ) = 0 (2)              ( , ), ( , ), ( , ) 0 (3)

where Pr( ) is the probability of scenario s; is the cost of 
dispatch in period t, X is the vector of state variables, Y is the 
vector of model parameters and U includes the decision 
variables such as commitment and dispatch. The constraints 
of the problem are shown in (2)-(3), which include power 
balance constraints, power flow equations, line capacity 
limits, generator capacity limits, ramping constraints, etc [41-
43].

To represent the failure probabilities in scenarios, one can 
use a failure vector for each scenario, = [ … ] , in which 

shows the time when line i fails. Given the estimated 
probability of failures for each line, the probability of each 
scenario, Pr( ), can also be calculated as shown in (4):

Pr( , … , ) = ( ) 1 ( 1)             (4) 
where is the probability of failure of line l, at time .

The simplest way of integrating failure estimations within 
stochastic SCUC is to generate all the possible scenario 
vectors F, and calculate the likelihood of their occurrence. 
However, such formulation can lead to an extremely large 
number of scenarios. The number of scenarios for a case, 
where L lines are affected in T periods will be ( + 1) . If the 
hurricane affects only 30 lines, in 4 hours, the number of 
scenarios can be as large as 9.3e20, which is more than 2000 
times larger than the age of the universe, measured in seconds, 
since the Big Bang.

Thus, thus simple implementation of the stochastic SCUC 
is not possible with a few exceptions, as listed below:

1. The number of affected lines and important hours are 
both small, which is common for tornados and 
uncommon for hurricanes.

2. The failure probabilities are close to extremes of 0 and 
1, and probabilistic transitions are rare or negligible.

In other cases, representation of all the possible scenarios
is not practical and a scenario selection method is required.

A. Scenario Selection
As mentioned above, scenario selection is an essential 

module within the developed platform. Without appropriate 
scenario selection, the tool will not be able to practically 
handle large systems. In designing any scenario selection 
method, it is important to sample the space in a way that the
selected set is representative of the scenario space. This is not 
at all a trivial task as the scenario space is extremely large. 

We base our scenario selection technique on two attributes 
of the failure probabilities: 1) the likelihood of the failure and 
2) the criticality of the transmission lines. Each line with a 
nonzero failure probability is evaluated based on these two 
attributes, as shown in Fig. 5. The failure probability is a direct 
product of the fragility analysis, explained in Section 3. The 
criticality of the lines, is measured based on the line outage 
distribution factors and the loading of the line in a simple 
SCUC. The criticality includes information on the number of 
lines that would get overloaded after the line under study fails; 
criticality also accounts for the severity of post outage
overloads.

In Fig. 5, each star represents a vulnerable line, with its 
failure probability and criticality. To generate scenarios, the 
space is divided into a grid. Each corner point in this grid 
represents a scenario, in which lines with higher failure 
likelihood and higher criticality are included. A sample 
scenario is shown in Fig. 5, with a red dot. In this figure the 
origin represents a scenario, where all the lines with any 
possibility of failure are assumed to be out. The point at the 
right-top corner represents a scenario, where all the lines 
survive. Another challenge in scenario selection is assignment 
of probability to each scenario. In this paper, we assign equal 
probabilities to each of the scenarios.

Fig. 5. The scenario selection method, based on failure probability and 
criticality of the transmission lines; the red dot represents a scenario, 
in which any outage with higher failure likelihood and higher 
criticality is included. 

B. Enhanced Formulation
Even with a small scenario set, stochastic SCUC can be 

extremely computationally demanding for large scale 
systems. Academic formulation of the problem, based on 

representation of the power flows is not tractable. Here we 
use three techniques to reduce the computational burden of the 
problem. These techniques are described below:

1. Flow calculations: Instead of representation of 
the flows, we use shift factors. With shift factors, the 
line flows can be calculated by multiplying the shift 
factor matrix, , with the nodal injection vector, I, as 
shown in (5). This formulation enables isolated 
calculation of select line flows, unlike the 
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formulation, where all the flows need to be calculated 
simultaneously. Thus, shift factor structure will allow 
elimination of a majority of line flow constraints for the 
lines, whose flows are not close to the limits. Moreover, 
voltage angles are eliminated entirely from the 
formulation, which again improves computational 
performance.= ;      = (5)

2. Line outage modeling: As the shift factor matrix
depends on the network topology, line outages change 
the shift factor matrix. Recalculation of the shift factor 
matrix is unfortunately computationally expensive. To 
properly model line outages without having to 
recalculate the shift factor matrix, we use flow 
canceling transactions, as described in [46,47]. Flow 
canceling transactions are an injection pair placed at the 
two ends of the line, which represent the outage of that 
line. Unlike the conventional line outage distribution 
factors, flow canceling transactions can properly model 
multiple line outages. 

3. Iterative constraint selection: To improve the 
computational performance, the model starts without 
modeling transmission limits and then calculates the 
flows after a solution is achieves. The model, then, adds 
the violated limits as constraints to the problem, and 
resolves the model. This process is repeated until no 
violation remains.

These techniques together enable us to achieve a tractable 
model that can handle large-scale systems within an 
acceptable time.

V. SIMULATION RESULTS

To study the effectiveness of the developed model, this 
section presents the simulation results on a synthetic 2000-bus 
Texas system [48], as shown in Fig. 6. 

Fig. 6. Synthetic 2000-bus Texas system [48]

Hurricane Harvey forecast data is used to conduct the 
study, as shown in Fig. 7.

Using the hurricane forecast, and the forecasted wind 
speed, the developed fragility curves are employed to estimate 
the failure probability of the transmission lines. The 
probabilities are then fed into the scenario selection method, 
explained in the previous section to generate a number of 
representative scenarios. Finally, the scenarios are used to 
solve a stochastic SCUC, with the enhanced formulation, 

discussed in Section 4. The stochastic SCUC produces a 
solution that only considers the modeled scenarios. To 
properly understand the performance of the model, the 
solutions are evaluated through Monte Carlo simulation, 
where the lines can go out with the probabilities calculated 
using the fragility curve. In the Monte Carlo simulation, the
commitment status of the generation units is fixed to that of 
the stochastic SCUC solution. The dispatch is allowed to 
change within the ramping limits. The reason for conducting 
Monte Carlo simulations is to evaluate the effectiveness of the 
solution, with line outages in patterns other than those 
included in the modeled scenarios. The expected power 
outages are shown in Fig 8.

Fig. 7. Hurricane Harvey forecast, taken from National Oceanic and 
Atmospheric Agency (NOAA).

Fig. 8. Simulation results on Texas 2000-bus system

The results show the expected power outages, which is the 
average of MWh of unserved load over the Monte Carlo 
simulations. The simulations are repeated, up to 11,000 times, 
until the results stabilized. The first set of the results belong to 
a regular SCUC, where line outage estimations are not used. 
As one would expect, ignoring the fact that a hurricane will hit 
the system will lead to high levels of power outage. The 
second set of the results represent a case where the system 
operator decides to turn all the units on as a response to the 
hurricane. Engineering judgment adjustments such as turning 
all the units on is used widely today in response to extreme 
events. The results suggest that using engineering judgment, 
though maybe expensive, can substantially reduce the 
expected power outages. The last three sets of results are 
obtained with the developed stochastic SCUC. To better see 
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the difference between the results, same plot is presented in 
Fig. 9, excluding business as usual.

Fig. 9. Performance of stochastic SCUC on the 2000-bus Texas system. 

In the results, shown in Fig. 9, the robust case only models 
the worst case-scenario, which considers all the lines with any 
probability of failure as out. The case with 2 scenarios 
combines the worst and best (no line outage) scenarios. The 
last case, considers 13 different scenarios, which is 
significantly more computationally demanding. While the 
maximum and minimum power outages seem to be consistent
in the last three cases, the expected outage (yellow diamond) 
decreases as the number of scenarios increase: from 622 MWh 
to 518 MWh and finally to 489 MWh for the case with 13 
scenarios.

It is also important to look at the cost of the dispatch for 
each case. The cost information is presented in Table 1. 
Obviously, the business as usual case has the lowest dispatch 
cost; however, the cheap dispatch comes with the penalty of 
large expected power outages. The engineering judgment of 
turning all the units on is relatively simple to implement; 
however, it will lead to a rather high dispatch cost and is not 
as effective as the developed stochastic SCUC. As shown in 
the table, the model developed in this paper, was able to 
substantially reduce the power outages, with minimally 
adding to the dispatch cost.

TABLE I. THEDISPATCH COST

Case Energy Cost
All Units Available $26,790,674
Business as Usual (Best Case) $19,748,334
Robust (Worst Case) $21,301,729
Developed Model with 2 Scenarios $21,293,998
Developed Model with 13 Scenarios $21,306,401

The last factor that is important to investigate is the 
solution time. In the simulation studies conducted in this 
paper, our model was able to solver the Texas 2000-bus 
system with 13 scenarios in less than 18 hours using standard 
hardware with no parallelization. This confirms that the 
developed formulation is tractable on a large-scale system. 
The performance can be further improved through better 
coding practices as well as parallel computing.

VI. CONCLUSIONS
Today, weather forecast data is not properly integrated in 

power system operation during extreme events. This paper 
presented an integrated platform, which enables preventive 

operation of power systems during extreme weather. The 
platform first forecasts weather with accuracy and resolution 
required for grid operation. Weather forecast data is, then,
passed to a transmission failure estimation module, which 
forecasts the failure probability of the transmission lines. 
Finally, the results of this analysis are used in a power system 
operation model to guide preventive operation. The preventive 
power system operation problem was formulated as a 
stochastic SCUC. A scenario reduction method was 
developed and employed alongside enhanced formulation to 
achieve tractability. The simulation results, conducted on a 
2000-bus Texas system, confirmed that the developed model 
is effective in reducing power outages with minimally adding 
to the dispatch cost. The computational time was also 
acceptable given the size of the system and the available 
hardware.
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